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Abstract

Multigrid methods have been shown to be an efficient tool for solv-
ing partial differential equations. In this paper, the idea of a multi-
grid method for nonsmooth problems is presented based on techniques
from piecewise linear differentiation. In detail, the original nonsmooth
problem is approximated by a sequence of piecewise linear models,
which can be written in abs-normal form by using additional switch-
ing variables. In certain cases, one can exploit the structure of the
piecewise linearization and formulate an efficient modulus fixed-point
iteration for these switching variables. Moreover, using the idea of
multigrid methods, one can find a solution of the modulus fixed-point
equation for the switching variables on a coarse discretization, which
then serves as an initial guess for the next finer level. Here, the impor-
tant aspect is the right choice for the prolongation operator in order
to avoid undesirable smoothing effects as it will be shown. Numerical
results indicate (almost) mesh-independent behavior of the resulting
method if done in the right way.

1 Introduction

The standard prerequisite of algorithmic differentiation and numerical op-
timization in finite dimension is that functions F : Rn → Rm consists of
several components (see e.g. [1, 22]) and can be represented by an evalu-
ation procedure [13] that can be thought of as a sequence of intermediate
assignments from a library of elemental functions such as ±,

√
·, sin, and cos

on some intermediate variables. Assuming that the components of this eval-
uation procedure are sufficiently smooth for the considered input variables
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u, one can derive extended evaluation procedures [12, 13] that yield deriva-
tive information such as Jacobi-vector products, vector-Jacobi products, the
Jacobian itself or even higher-order derivatives of F . The sensitivity in-
formation is usually used to form a linear or quadratic model of the original
nonlinear problem, for example, to find a root of F (u) = 0, if m = n, or some
other optimization tasks such as minu∈Rn F (u), if m = 1. The latter models
then serve in a Newton, steepest-descent, trust-region, or some other method
[23, 7] to define a search direction in order to find a better approximation of
the real solution u∗ for the original problem. Several of these algorithms have
been successfully adopted in the function space setting [10, 16, 26], where u
is not a real vector but a function in some adequate space and F denotes an
operator acting on this function.

In many cases, however, it is inadequate to use a smooth model to ap-
proximate F , for example if F is nonsmooth. Therefore, we focus in this
paper on an efficient solution of the problem F (u) = 0 for a nonsmooth
operator F : U → U that, for example, arises by reformulating (non-)linear
complementarity problems using the minimap function [8, 21]. To do so, we
extend several results from piecewise linear differentiation in finite dimen-
sions [12, 18, 24] to the function space setting and only focus on operators
that are a finite composition of smooth intermediate expressions and the
absolute value. This approach allows us to formulate a more sophisticated
piecewise linearization F ′(u; δu) of the original function F at u for some in-
crement δu that reflects the underlying problem structure more accurately
by taking into account the nonsmoothness of the original problem.

The piecewise linear models Gu(δu) := F(u) + F ′(u; δu) are stated in
terms of an “infinite” dimensional abs-normal form (ANF) using some addi-
tional switching variables z, which was already introduced and investigated
in [12, 19, 24]. The presented definitions are similar to the original ones from
the finite dimensional setting [25] except that the variables v, u, z . . . are now
functions over some appropriate domain instead of real scalars and vectors.
Analogously, the quantities Z, J, L . . . in the abs-normal form and the prod-
ucts Zu, Ju, . . . , which used to be matrices and matrix-vector products, need
to be understood as operators and their application on a function.

A solution of the piecewise linear equation Gu(δu) = 0 then yields a gen-
eralized Newton step, which either solves 0 = F(u + δu) in the piecewise
linear case or serves as a search direction in the nonlinear scenario. Obvi-
ously, solving the piecewise linear equation is in general much harder than
a simple linear solve that would be required for a simple linearization with
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some active set method. However, we believe that the presented approach is
much more intuitive since, for example, as a result we find that a nonlinear
complementarity problem should be approximated by linear complementarity
problems.

Depending on the structure these (piecewise) linearizations can still be
solved efficiently. To this end, we propose a multigrid method for the solution
of (discretized) piecewise linear equations in abs-normal form. The basic idea
follows a successive refinement strategy, where the discretized ANF is itera-
tively solved by using the (approximate) solution of the additional switching
variables z on a coarser grid as an initial guess for the finer grid. The conver-
gence of the resulting methods is mainly inherited by the convergence prop-
erties of the considered iterative scheme, for example, the proposed modulus
fixed-point iteration [25]. An important aspect of this approach is the right
choice for the prolongation operator to avoid undesirable smoothing effects
in the refinement step of z that is usually nonsmooth and discontinuous.

For simplicity, most of the results are exemplified only for the modulus
fixed-point iteration on a simply switched complementarity problem, i.e. an
operator whose evaluation procedure does not contain nested abs-value eval-
uations, although more complicated scenarios are possible. With this specific
iteration, however, the presented approach is only partly applicable as shown
for an extended complementarity problem at the end of Section 2.

The goal of the paper is not only to provide a “new” multigrid method,
but also to inspire research on how piecewise linear algorithmic differentiation
and its results can be used in a function space setting.

The paper is structured as follows: In Section 2, the basic ideas and re-
sults of piecewise linear differentiation are presented in the function space
setting. This formalism can be used for a first-optimize-then-discretize ap-
proach to define a piecewise linear model in function space to approximate
the original nonsmooth problem. The discretization of the latter approxi-
mation is efficiently solved by the multigrid/successive refinement strategy
presented in Section 3. Some numerical experiments that validate this ap-
proach are given in Section 4. We conclude in Section 5 with a summary and
suggestion for future work.
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2 Piecewise differentiation (revised)

In the following, we extend the results from piecewise linear differentiation
in the Euclidean space Rn to infinite dimensional operators. We assume that
(U , ‖ · ‖U) and (W , ‖ · ‖W) are real Hilbert spaces with a point-wise ordering
and U is an open subset of U with the basic operations extending the identity
and absolute value function to the infinite dimensional scenario. Hence, we
mainly follow standard notation and denote by I : U → U the identity
operator that maps every element/function u ∈ U onto itself (i.e. I(u) = u)
and we write L(U ,W) for bounded linear operators from the space U to W .
Furthermore, the projection operator Iû<ǔ : U → U refers to the operator1

that point-wise satisfies

Iû(ω)<ǔ(ω)(u(ω)) =

{
u(ω), wherever û(ω) < ǔ(ω)

0, else
∀ ω ∈ Ω

for given functions û, ǔ ∈ U over a domain Ω such that the abs-operator
Σ : U → U applied on u,

Σ(u) := Iu>0(u)− Iu≤0(u),

yields the entry-wise absolute value function Σ(u) = (|u1|, . . . , |un|) for all
vectors u = (u1, . . . , un) ∈ U in the finite-dimensional case U = W = Rn.
Hence, we can abbreviate Σ(u) = |u| and use the corresponding symbols for
all expressions that can be derived from these operators (e.g. min, max). In
some cases, we also consider the modified abs-operator Σû(u) : U × U → U
that is defined for a given û ∈ U by

Σû(u) := Iû>0(u)− Iû≤0(u).

The next definition is a generalization of the evaluation procedure for piece-
wise smooth functions [12, 25]. It uses the precedence relation j ≺ i known
from algorithmic differentiation [13], which indicates that an operator Fi di-
rectly depends on the result of an operator Fj. The key difference between
the finite-dimensional and the following definition is that the range and the
domain spaces of the intermediate operators Fi : Ui ⊆ Ui → Wi ⊆ Wi now
need to be consistent; in other words, it is required that the subsets in the

1≤, >, ≥, ∈, and = accordingly
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range space (Wj)j≺i of all operators Fj, which directly precede the operator
Fi, must be able to be embedded in the open subset Ui of the domain space
Ui of Fi.

Definition 1. Let (U , ‖ · ‖U) and (W , ‖ · ‖W) be real Hilbert spaces with a
point-wise ordering, and let U be an open subset of U . Than the operator
F : U ⊂ U → W ⊂ W is called (abs-)decomposable if there are a finite
number of point-wise ordered real Hilbert spaces {(Ui, ‖·‖Ui), (Wi, ‖·‖Wi

)}ki=0

that are consistent and contain open subsets Ui ⊂ Ui and Wi ⊂ Wi with
U ⊆ U0 and Wk ⊆ W , such that F can equivalently be written by an
infinite-dimensional evaluation procedure

vi = Fi(vj)j≺i, i = 0, . . . k

of operators Fi : Ui →Wi that are either abs-operators Σ(ui) with Wi ⊆ Ui
or Frechet differentiable for any initial v0 ∈ U . In other words, the result of
applying the evaluation procedure2 on any v0 = u is identical to F applied
on u ∈ U , namely,

F(u) = vk ∈ W for all u ∈ U.
The triple ({Fi}, {Ui}, {Wi})≺F is called (abs-)decomposition of F for the
precedence relation ≺F induced by F .

The decomposition in Definition 1 is not unique, as can be seen in the next
example, where F can be decomposed in several other ways, for example, by
switching the sign of the operator F2 or exchanging F1 and F3.

Example 1. Consider the linear complementarity problem for given f, ϕ ∈
H1

0(Ω,R) to determine a function u ∈ U := H1
0(Ω,R) that satisfies

0 ≤ u(x)− ϕ(x) ⊥ −∆u(x) + f(x) ≥ 0 for almost all x ∈ Ω

over some domain Ω ⊂ Rn . The problem can be reformulated in terms of
finding a root u∗ with F(u∗) = 0 of the nonsmooth operator

F(u) := u− ϕ−∆u+ f − |u− ϕ+ ∆u− f |.

The operator F(u) : U → W := H1
0(Ω,R) is decomposable since one can,

for example, define the operations v0 = F0(u) := u, v1 = F1(v0) := v0 −
2For readability, we will usually omit the dependence of the vi’s on their predecessors

and drop the arguments if unambiguous
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ϕ − ∆v0 + f , v2 = F2(v0) := v0 − ϕ + ∆v0 − f , v3 = F3(v0) := |v2|, and
v4 = F4(v1, v3) := v1 − v3. In detail, one can choose Ui = Wi = H1

0(Ω,R)
for all spaces except of U4, which has to be equal to H1

0(Ω,R)×H1
0(Ω,R) to

allow for consistency. The corresponding precedence relation ≺F is simply
(0 ≺ 1), (0 ≺ 2), (2 ≺ 3), (1, 3 ≺ 4).

Analogous to before, one can now generalize the term piecewise lineariza-
tion of an abs-decomposable function in terms of operators.

Definition 2. Let ({Fi}, {Ui}, {Wi})≺F be the decomposition of a decom-
posable operator F , and denote by F ′i : Ui → L(Ui,Wi), vi → F ′i(vi), the
Frechet derivative at the argument ui := (vj)j≺i ∈ Ui for each intermedi-
ate Frechet differentiable operator Fi from the original evaluation procedure.
Assume that for any given input v0 := u and δv0 := δu ∈ U all increments
δui := (δvj)j≺i ∈ Ui and that intermediate spaces of the extended evaluation
procedure

δvi = F ′i(ui; δui), i = 0, . . . k,

are well-defined and consistent with

F ′i(ui; δui) :=

{
F ′i(ui)δui if Fi is Frechet differentiable

|ui + δui| − |ui| otherwise.

The result δvk of the modified evaluation procedure, represented by the
quadruple ({Fi}, {F ′i}, {Ui}, {Wi})≺F , will be called the piecewise lineariza-
tion F ′(u; δu) of F at u for the direction δu and G(u) := F(u) +F ′(u; δu) is
the piecewise linear model of the operator F at u.

The latter definition yields the following results for the given example.

Example (continued). As can be easily seen, the operators F0,F1,F2, and
F4 are all linear and bounded, with their corresponding Frechet derivatives I,
I −∆, I + ∆, and (I,−I), respectively. For these operators, the increments
δvi of the modified evaluation procedure are therefore given by

F ′0(u; δu) = δv0, F ′1(u1; δu1) = δv1 −∆δv1,

F ′2(u2; δu2) = δv1 + ∆δv1, and F ′4(u4; δu4) = δv1 − δv3,

whereas F ′3(u3; δu3) = |v2 + δv2| − |v2| using v2 = u − ϕ + ∆u − f . Hence,
the piecewise linear model turns out to be

F(u) + F ′(u; δu) = 2 min(u+ δu− ϕ,−∆(u+ δu) + f),

for the (element/point-wise) min-operator min(a, b) := 1
2
(a+ b− |a− b|).
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In fact, several parts of the concept for (piecewise linear) algorithmic
differentiation can be adapted from finite dimensions besides the previous
ones, such as the directed acyclic graph [13] for the precedence relation ≺,
and it is straightforward to extend other definitions and results from [12] to
the operator setting. For example, the following conclusions for the relation
between any decomposable operator and its piecewise linearization hold true:

Proposition 1. Suppose that F : U → W is decomposable and all inter-
mediate Frechet derivatives F ′i(ui) of its piecewise linearization are Lipschitz
continuous on some open subset U of a closed convex domain K. Then there
exists a non-negative constant c1 ∈ R such that for all û, ǔ ∈ K,

‖F(û)−F(ǔ)−F ′(ǔ; û− ǔ)‖W ≤ c1‖û− ǔ‖2
U . (1)

Moreover, there exists a constant 0 ≤ c2 ∈ R such that for any pair û, ǔ ∈ K

‖F ′(û; δu)−F ′(ǔ; δu)||W/(1 + ‖δu‖U) ≤ c2‖û− ǔ‖U ∀δu ∈ U . (2)

Proof. Follows the same arguments from the finite-dimensional scenario.

Obviously, the piecewise linear models G of F are of special interest for
the generalized Newton method to find a sequence of iterates {uj}∞j=0 ⊂ U

uj+1 = uj + αpδuj, where δuj solves 0 = F(uj) + F ′(uj; δuj) (3)

from some initial guess u0 ≈ u∗ that (at least locally) converge to a root u∗

of F , if existing. The global convergence is often improved by a step-size
regulation, that is, by scaling the Newton direction δu with a non-negative
step-size parameter α ∈ R derived from some line-search method [23] on an
appropriate merit function [4]. For the considered example, one finds the
following result in the Newton scenario.

Example (continued). The previously considered operator F is apparently
itself piecewise linear since F0,F1,F2, and F4 are all linear and bounded,
and F4 is an abs-operator. In fact, F and its piecewise linear model coincide
such that (1) is satisfied with c1 = 0 and the generalized Newton method (3)
converges within one iteration for any initial value u0 if δu0 is a solution of

0
a.e.
= 2 min(u0 + δu− ϕ,−∆(u0 + δu) + f).
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In the following, we use vectorial notation for the analysis and represent
piecewise linear operators in terms of the standard abs-normal form (ANF)
that was originally proposed in [19] and just recently rediscovered in [25].
Here, piecewise linear refers to operators G : U ⊂ U → W whose evaluation
procedures contain only intermediate operators that are either linear and
bounded or an abs-operator as is the case for the piecewise linear models of
general abs-decomposable operators F : U ⊂ U → W at a fixed argument u ∈
U , namely G(δu) := Gu(δu) with Gu(δu) := F(u) + F ′(u; δu). Basically, the
only difference for the ANF is that a, b and Z,L, J, Y now denote functions
and linear, bounded operators instead of vectors and matrices. Also, the
former (sub-)matrix-vector products need to be thought of as applying an
operator on the corresponding element instead of as a simple matrix-vector
multiplication.

Definition 3. Let G : U → W be decomposable into ({Gi}, {Ui}, {Wi})≺F

and denote by z = (zj)
s
j=1 ∈ US := Ui1×· · ·×Uis the arguments of the s ∈ N

occurring abs-operators Gij : Uij →Wij = Uij . The representation[
z
G(δu)

]
=

[
a
b

]
+

[
Z L
J Y

] [
δu
|z|

]
⇐⇒

[
z
G(δu)

]
=

[
a
b

]
+

[
Z LΣz

J Y Σz

] [
δu
z

]
(4)

of G with Z ∈ L(U ,US), J ∈ L(U ,W), and Y ∈ L(US,W) will be refereed to
as an abs-normal form of G if the operator L is strictly lower(-left) triangular:

L =


0 . . . 0
∗
...

. . .
...

∗ . . . ∗ 0

 , L ∈ L(US,US).

More precisely, the components representing the derivatives ∂zj/∂|zi| of the
mapping |z| → z must vanish for all indices i ≥ j, i, j = 1, . . . s, which are
represented by the upper right entries Lij ≡ 0 in the above matrix notation.

Analogous to the finite dimensional case, one can define the switching
depth η ∈ N, which is the smallest number such that (η + 1)-time repeated
application Lη+1 = L◦L◦ · · ·◦L of the operator L onto itself yields Lη+1 ≡ 0
and call ANFs with switching depth η = 0 simply switched. Also, there
always exist functions a, b and operators Z, L, J , and Y such that any piece-
wise linear function G with a finite evaluation procedure can be represented
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as an ANF. If G is a piecewise linear model F(u) + F ′(u; δu) of an operator
F : U → W then the quantities of the ANF usually also depend on the
argument u ∈ U :

a = a(u) = (a1(u), a2(u), . . . , as(u)) : U → U s, b = b(u) : U → W

and the operators Z = Z(u), L = L(u), J = J(u), Y = Y (u) satisfy

u ∈ U → Z(u) ∈ L(U ,US), u ∈ U → J(u) ∈ L(U ,W),

u ∈ U → L(u) ∈ L(US,US), u ∈ U → Y (u) ∈ L(US,W).

Although this dependence should always be kept in mind, it will not be
explicitly stated in the following, in order to avoid cumbersome notation.
Assuming that W ≡ U and that the operator J is invertible with a corre-
sponding inverse operator J−1, one can use the Schur-complement operator

S = L− ZJ−1Y ∈ L(U s,U s)

to define a modulus fixed-point equation on the arguments z ∈ U s of the
abs-operators by

[I − SΣz]z = a− ZJ−1b, (5)

as was pointed out in [19, 25]. The latter equation is solved by a limit
z∗ = limk→∞ zk of the modulus fixed-point iteration

zk+1 := [I − SΣzk ]−1(a− ZJ−1b) (6)

if this limit exists and was found for some initial guess z0 ∈ US (e.g. z0 = a).
The solution z∗ then provides a solution

δu = −J−1[b+ Y |z∗|] (7)

of the ANF for the prescribed function value 0 = G(δu). However, the
convergence of the fixed-point iteration to a fixed point z∗ depends on the
entries of the ANF at u and the initial value z0, as was observed in [25].

Example (continued). An ANF for the piecewise linear model of the pre-
viously considered F at u and some directional increment δu is given by[

z
2G(δu)

]
=

[
u− ϕ+ ∆u− f
u− ϕ−∆u+ f

]
+

[
I + ∆ 0
I −∆ −I

] [
δu
|z|

]
.
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Obviously, only a := u − ϕ + ∆u − f and b := u − ϕ − ∆u + f depend on
u, whereas Z := I + ∆, L := 0, J := I −∆, and Y := −I are independent
of u. Since the operator J = (I + ∆) is invertible, one can use its inverse
mapping J−1 = (I + ∆) to define the modulus fixed-point equation (6) with
S = 0− (I+ ∆)◦ (I+ ∆)−1 ◦ (−I)◦Σz to find a direction δu with G(δu) = 0
for the generalized Newton method (3).

Clearly, the advantage of this approach, namely, first formulating the
ANF in infinite dimensions instead of using a first-discretize-then-optimize
approach, is that the structure of the considered problems can be exploited.
In detail, the equations can now be treated in the correct spaces and solved by
appropriate procedures, for example by some multigrid methods to improve
the efficiency of the resulting algorithms. At least for the previous example,
one can also benefit from the fact that Z and J−1 are commutative operators
and reformulate the fixed-point equation in a more numerical efficient way

[J − ZΣzk ]zk+1 = Ja− Zb, (8)

which can be iteratively solved and avoids dense matrix approximations of
the inverse Laplace operator (or modifications) in the discrete formulation
later on. However, there is no reason that J should be invertible at all. For
this case, Griewank suggested in [12] using the simple identity

δu = |δu+ |δu|| − |δu|, (9)

or modifications of it, to define an ANF, where the corresponding lower left
block is invertible, which inspires the definition of an extended ANF:

Definition 4. Let G : U ⊂ U → U be a decomposable operator that is
represented by the ANF (4) and Γ = Γ(u) ∈ L(U ,U) a given operator that
might depend on u. Then the representation

z
ẑ
ž
G(δu)

 =


a
0
0
b

+


Z LΣz 0 0

J − Γ 0 0 0
J − Γ 0 Σẑ 0

Γ Y Σz −Σẑ Σž



δx
z
ẑ
ž

 (10)

is called an extended abs-normal form (of its original ANF w.r.t. to Γ) ,
where Σz and Σẑ, Σž are the abs-operators for the original switching functions
z ∈ US and the additional variables ẑ, ž in some appropriate space Û , Ǔ ⊇ U ,
respectively.
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Using the same arguments as for the original ANF, one can now define a
modulus fixed-point iteration for the extended ANF:

Proposition 2. Denote by Σz, Σẑ, and Σž the abs-operators of some current
iterates (zk, ẑk, žk) of the modulus fixed-point iteration (6) for the extended
ANF (10) with prescribed 0 = G(δu), and let Γ(u) ∈ L(U ,U) be a given
invertible operator. Then the next iterates (zk+1, ẑk+1, žk+1) are given by the
solution of the systemC ZΓ−1(Σž − Σẑ + ΣžΣẑ) 0

0 B 0
0 −(I + Σẑ) I

zk+1

ẑk+1

žk+1

 =

 a− ZΓ−1b
(JΓ−1 − I)(Y ΣzC

−1[ZΓ−1b− a] + b)
0


if the two operators C := I − LΣz + ZΓ−1Y Σz and

B := I+(JΓ−1−I)(−Σẑ+Σž+ΣžΣẑ)−(JΓ−1−I)Y ΣzC
−1ZΓ−1(−Σẑ+Σž+ΣžΣẑ)

are invertible.

Proof. Since Γ is invertible, one can compute the corresponding Schur com-
plement S for the extended ANF (10) and formulate the left-hand side I−SΣ
of the modulus fixed point iteration (6) to determine the next switching func-
tions (zk+1, ẑk+1, žk+1) for some currently given iterates (zk, ẑk, žk) using the
defined abs-operators Σz, Σẑ, and Σž, namely,

I − SΣ =

I − LΣz 0 0
0 I 0
0 −Σẑ I

+

 Z
J − Γ
J − Γ

Γ−1
[
Y Σz −Σẑ Σž

]
I − LΣz + ZΓ−1Y Σz −ZΓ−1Σẑ ZΓ−1Σž

(J − Γ)Γ−1Y Σz I − (J − Γ)Γ−1Σẑ (J − Γ)Γ−1Σž

(J − Γ)Γ−1Y Σz −Σẑ − (J − Γ)Γ−1Σẑ I + (J − Γ)Γ−1Σž

 .
This expression can be simplified by the transformation Q := Q3Q2Q1 that
is given by the three elementary bijective operators

Q1 =

I 0 0
0 I 0
0 −I I

 , Q2 =

I 0 −ZΓ−1Σž

0 I −(JΓ−1 − I)Σž

0 0 I

 ,
Q3 =

 I 0 0
−(JΓ−1 − I)Y ΣzC

−1 I 0
0 0 I

 ,
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where the last one exists only if C = I − LΣz + ZΓ−1Y Σz is invertible.
Thus, applying the transformation Q on both sides of the modulus fixed
point iteration for the extended ANF does not alter the solution and yields
the desired result with the stated operator B.

Note that the assumption “C is invertible” in the proposition can always
be achieved by choosing Γ in such a way that ‖Γ−1‖ is sufficiently small.
However, the requirement of B being invertible cannot be always guaranteed
since, for example, in the case J = 0, Σz = 0 and −Σẑ + Σž + ΣžΣẑ = I
one finds B = 0. Furthermore, by considering the extended ANF in order
to resolve the issue of defining the modulus fixed-point iteration in case of
singular J , one introduces a number of additional switching variables that
might increase the likelihood of divergence of the modulus fixed point iter-
ation in terms of cycling [25]. Moreover, the system might not be solvable
at all, for example, under the previous assumptions with b 6= 0. Therefore,
the algorithm in the next section is stated as general as possible to allow for
different fallback options (see [2, 3, 20]) in case of problems like the following.

Example 2. For some prescribed functions f , ϕl, and ϕu with ϕu ≥ ϕl,
consider the modified linear complementarity problem

0 ≤ +u(x)− ϕl(x) ⊥ −∆u(x) + f(x) ≥ 0 and

0 ≤ −u(x) + ϕu(x) ⊥ +∆u(x)− f(x) ≥ 0 for almost all x ∈ Ω,

which requires −∆u + f = 0 to be satisfied whenever u is (strictly) between
its lower or upper bound, ϕl and ϕu, respectively. It can be written as

0
a.e.
= F(u) = min [min[u− ϕl,−∆u+ f ],min[−u+ ϕu,∆u− f ]]

such that its piecewise linear model G(δu) = F(u) + F ′(u; δu) at u,

min [min [u+ δu− ϕl,−∆[u+ δu] + f ],min[−u− δu+ ϕu,∆[u+ δu]− f ]]] ,

is represented by an ANF with a singular smooth part J = 0. The quantities
of the extended ANF (10) for the piecewise linear model of the modified linear
complementarity problem are given by

a =

 +u− ϕl + ∆u− f
−u+ ϕu −∆u+ f

2(u−∆u+ f)− ϕl − ϕu

 , Z =

 +I + ∆
−I −∆
2(I −∆)

 , L =

 0 0 0
0 0 0
−I I 0


b =

[
ϕu − ϕl

]
, J =

[
0
]
, and Y =

[
−I −I −I

]
.
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3 Nonsmooth multigrid method

This section contains a multigrid method for the numerically efficient solution
of F(u) = 0 for some abs-factorizable operator F : U ⊂ U → U that
represents some nonsmooth PDE. The proposed method follows an approach
similar to the original multigrid method [14, 17], and thus its structure mainly
coincides with the one in the smooth case. For simplicity, only piecewise-
linear functions G : U ⊂ U → U are considered that arise as piecewise-linear
models G(δu) = F(u) + F ′(u; δu) of a nonlinear operator F . In the smooth
case, the equality G(δu) = 0 is approximated by a discretized linear equation
G(δu) = 0, which can be written as

Alδul = ql (11)

for some appropriate discretization matrix Al representing the Jacobian of
F at u and corresponding right-hand side ql. Here, the superscripts l ∈ N
indicate the current discretization level l so that l− 1 and l+ 1 represent the
next coarser and finer discretization level, respectively. Consequently,

Rl,l−1
u : U l → U l−1 (Rl,l−1

z : U lS → U l−1
S )

denotes the restriction operator, which maps elements from the space of fine-
grid functions U l (U lS) to the corresponding elements in the space of coarse
grid functions U l−1 (U l−1

S ); and, analogously, the prolongation operator is
denoted by

P l−1,l
u : U l−1 → U l (P l−1,l

z : U l−1
S → U lS).

In particular, the prolongation and restriction usually satisfy the equality
Rl,l−1
u (P l−1,l

u (u)) = u
(
Rl,l−1

z (P l−1,l
z (z)) = z

)
, namely, the application of a

restriction on a prolonged element from the coarse space is the element itself
(in the coarse space). Using this notation, one can state the key ingredients
of the nonsmooth multigrid algorithm, that is, the full multigrid method, the
basic multigrid method, and the simple V-Cycle given by Algorithms 1, 2,
and 3, respectively.

13



Algorithm 1 [zl, ul] = FullMG[lmax, l, lmin, z
l, ul, ε,maxiter,maxmgv]

1: for l = l, . . . , lmin + 1 do
2: Restrict zl−1 := Rl,l−1

z (zl) and ul−1 := Rl,l−1
u (ul)

3: end for
4: for l = lmin, . . . , lmax do
5: [zl, ul, f lag] := MGV[l, lmin, z

l, ul, ε,maxiter,maxmgv]
6: if l < lmax then
7: Project zl := Dl(zl)

8: Prolong zl+1 := P l,l+1
z (zl) and ul+1 := P l,l+1

u (ul)
9: end if

10: end for

The key difference between the original full multigrid method for the
smooth case (see [14, 17]) and the presented method FullMG is that instead
of modifying u directly by solving the residual equations for (11) on the
coarser grids to find a suitable correction of δul, one applies the V-cycle on
the switching variables z depicted in Figure 1, which is then used to compute
a correction of δul at each level l.

Algorithm 2 [zl, ul, f lag] = MGV[l, lmin, z
l, ul, ε,maxiter,maxmgv]

1: flag := false; iter = 1;
2: while (flag == false)&&(iter ≤ maxmgv) do
3: Set δul := 0
4: [zl, δul, f lag] := VCycle[l, lmin, z

l, ul, δul, ε,maxiter]
5: Update ul := ul + δul; iter = iter + 1;
6: end while

In detail, for some given initial approximations ul and zl on the grid l,
the nonsmooth VCycle used in the multigrid cycle MGV differs from the
original method in that instead of evaluating the discretization matrix Al for
each level l, one evaluates in evalANF the abs-normal form (4) of G at ul for
each level l and performs the restriction, prolongation, and projection on the
variables z, u, δu (lines 5,7,8). The motivation for the projection operator

Dl : U lS → U lS

will be explained in the next section, as well as an appropriate choice for the
prolongation and restriction operators P l−1,l and Rl,l−1, respectively.

14



Algorithm 3 [zl, δul, f lag] = VCycle[l, lmin, z
l, ul, δul, ε,maxiter]

1: Evaluate [a, b, Z, L, J, Y ] := evalANF[l, ul, δul]
2: if (l ≤ lmin) then maxiter = +∞;
3: else
4: [zl, δul, f lag] := solveANF[l, a, b, Z, L, J, Y, zl, δul, ε,maxiter]
5: Project zl := Dl(zl)

6: Restrict zl−1 := Rl,l−1
z (zl), ul−1 := Rl,l−1

u (ul), and δul−1 := Rl,l−1
u (δul)

7: [zl−1, δul−1] := VCycle[l − 1, lmin, z
l−1, ul−1, δul−1, ε,maxiter]

8: Project zl−1 := Dl(zl−1)

9: Prolong zl := P l−1,l
z (zl−1) and δul := P l−1,l

u (δul−1)
10: end if
11: [zl, δul, f lag] := solveANF[l, a, b, Z, L, J, Y, zl, δul, ε,maxiter]

The method solveANF in the V-cycle given by Algorithm 4 corresponds
to a smoothing operator on the current grid level that is usually applied
in smooth multigrid methods (e.g., a Jacobi, Gauss-Seidel, or Richardson
method). But instead of improving the linear residual equation of (11) as it
is done in the smooth case, now one or more steps of the modulus fixed-point
iteration FPIter (Eq. (6)) are performed to find a better approximation
zl. The latter approximation zl is then used to compute an update δul for
the multigrid algorithm 2 using Equation (7). In fact, the components of
the multigrid algorithm are designed in such a way that any of the proposed
iterations from [2, 3, 6, 25, 20] (e.g., also the Block-Seidel iteration) can be
encoded in the method FPiter to solve the ANF and allow for alternatives
in the case of singular J .

Algorithm 4 [zl, δul, f lag] = solveANF[l, a, b, Z, L, J, Y, zl, δul, ε,maxiter]
1: iter := 0, flag := false
2: while (flag == false) and (iter < maxiter) do
3: iter := iter + 1
4: [zlnew, δu

l
new] := FPIter[l, a, b, Z, L, J, Y, zl, δul]

5: if (‖zl − zlnew‖US < tol) then flag := true
6: end if
7: Update zl := zlnew and δul := δulnew
8: end while

15



Nested VCycle with MGV for the linear solve within FPIter
L
e
v
e
l 
l

VCycle-Step for the switching variables z

Project evalANF Restrict/ProlongatesolveANF

lmax

lmin

Figure 1: V-cycle of the proposed nonsmooth multigrid method and a more
elaborate nested V-cycle, where each step of the modulus fixed-point iteration
(6) and (7) is computed by a standard multigrid method to increase efficiency

3.1 Prolongation, Projection, and Restriction

The space US of the switching variables is in general a product U1 × · · · ×
Um × · · · × Us of several spaces Um. Thus, z can be thought of as a vector
z = (z1, . . . , zs) of several components/functions zm. After the switching
variable zl−1 is computed on the coarse level l − 1 by the modulus fixed-
point iteration within the previously described method, each of components
zl−1 := zl−1

m ∈ U lm of z needs to be prolonged to the next finer level l.
However, the prolongation P l−1,l

z for the component zl−1 should not be chosen
simply to be one of the usual suspects that are used in smooth multigrid
methods. In particular, the standard prolongation operator P l−1,l

z defined as
the weighted average over the direct neighbor values alone is not appropriate
for the prolongation of each component zl−1 since it is prone to outliers
and has an implicit smoothing effect that can eliminate precious information
about zl−1, which is usually nonsmooth and might even be discontinuous; for
example, using only a smooth prolongation operator on zl−1 could result in
an interpolated value that is positive although all but one of its neighbors
are negative. Therefore, it is advisable to prolong the result of the projection

Dl
z(z

l(ωz)) = I{zl(ωz)>0}(z
l(ωz))− I{zl(ωz)<0}(z

l(ωz)) ∀ωz ∈ Ωz, (12)
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which yields the point-wise sign of z, namely, Dl
z(z(ωz)) ∈ {−1, 0, 1} over the

appropriate domain Ωz 3 ωz. Alternatively, one can also use the ε-projection
for sufficiently small ε ∈ R+

Dl
z,ε(z

l(ωzl)) = I{zl(ωz)>ε}z
l(ωz)− I{zl(ωz)<−ε}z

l(ωzl) ∀ωz ∈ Ωz

to compensate for numerical floating-point errors, which make it hard to
exactly verify zl−1 = 0. These two projection variants are based on the
observation that only the sign of zl over the corresponding domain Ωz 3 ωzl
and not its actual value is needed to define the first step of modulus fixed-
point iteration at the next finer level. However, the correctness and the
quality of the result from the ε-projection Dl

z,ε strongly depend on the scaling
of zl and the “right” choice of ε, which is usually unknown. Therefore, we
suggest using the exact sign projection Dl

z = Dl
z,0, which often provides

sufficiently accurate results and avoids the task of finding a good estimate
for ε (as can be seen for the numerical examples later on). The prolongation
from the coarse to the fine grid is achieved by some suitable prolongation
operator P l−1,l that leaves the value for every existing grid-point unchanged
and assigns to every new point an average value of its neighbors. For example,
in the 2D case for a square domain Ωz, which is discretized by an equidistant
grid with N (l−1) discretization points in one direction on the level l − 1, one
can use the nine-point prolongation [17] given by

zl2i,2j = zl−1
i,j ∀ i = 0 . . . N (l−1), ∀ j = 0 . . . N (l−1),

zl2i+1,2j = 1
2

(
zl−1
i,j + zl−1

i+1,j

)
∀ i = 0 . . . N (l−1) − 1, ∀ j = 0 . . . N (l−1),

zl2i,2j+1 = 1
2

(
zl−1
i,j + zl−1

i,j+1

)
∀ i = 0 . . . N (l−1), ∀ j = 0 . . . N (l−1) − 1,

zl2i+1,2j+1 = 1
4

(
zl−1
i,j + zl−1

i,j+1 + zl−1
i,j + zl−1

i+1,j + zl−1
i+1,j+1

)
∀ i, j = 0 . . . N (l−1) − 1.

(13)

This combination of projection and prolongation on zl−1 has the simple effect
that the interpolated values zli,j of the refined zl are given by the average sign
of its direct neighbors’ Ni,j values on the coarse grid, or more precisely

P l−1,l
z (Dl−1(zl−1

i,j ))) =


−1, if

∑
ω∈Nij

sign(zl−1(ω)) < 0

0, if
∑

ω∈Nij
sign(zl−1(ω)) = 0

+1, if
∑

ω∈Nij
sign(zl−1(ω)) > 0

.

On the one hand, this behavior is beneficial for problems with domains Ωz

that consist of larger subsets, where z has the same sign, such that elements
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in the relative interior of these subsets are assigned the same signature as the
majority of it’s neighbors and that elements with the same number of neigh-
bors with positive and negative signature are set to the ‘neutral’ sign zero (cf.
Figure 2). On the other hand, this effect might introduce wrong results, for
example in the case of structures that resolve only on finer resolutions or have
corners/isolated points. The latter artificially introduced errors then require
additional correction steps in terms of the modulus fixed-point iteration on
the finer grid. Nevertheless, at least for the numerical examples considered
in Section 4, the first-project-then-prolong strategy dramatically reduces the
overall number of fixed-point iterations and increases the efficiency of the
proposed multigrid method.

In an analogous way, one can define the coarse approximations zl−1 of zl

on the previously projected values Dl(zl) using either a (weighted version of
the) nine-point restriction operator [17]

zl−1
i,j =

1

4
zl2i,2j +

1

16

(
zl2i−1,2j−1 + zl2i−1,2j+1 + zl2i+1,2j−1 + zl2i+1,2j+1

)
+

1

8

(
zl2i,2j−1 + zl2i,2j+1 + zl2i−1,2j + zl2i+1,2j

)
,∀i, j = 1 . . . N (l−1) − 1,

(14)

or, alternatively, the trivial restriction zl−1 = Rl,l−1
z (zl) that is given by

zl−1
i,j = zl2i,2j, for all i, j = 0 . . . N (l−1), (15)

where every second element in the relative interior is simply dismissed.
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Figure 2: Visualization of a function zl−1 (left), its projected-prolonged-
projection Dl

z(P
l−1,l
z (Dl−1

z (zl−1))) (middle), and its simply projected-
prolongation Dl

z(P
l−1,l
z (zl−1)) (right). Here, the last projection Dl

z is due
to the projection that is implicitly given by the definition of Σ.
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3.2 Modified V-Cycle/Successive-Refinement Method

As was observed in the previous subsection, the restriction/prolongation in
combination with the projection causes artificial errors that might lead to
additional correction steps by the modulus fixed-point iteration on the next
considered level l. Specifically, several redundant steps could be avoided and
are needed only to undo the effects of the inappropriate smoothing effect
introduced by (13) and (14). Therefore, instead of the full multigrid method,
we propose to simply use the modified MGV method without the solveANF
in line 4, where the number of maximum iterations is set to infinity and the
maximum of MGV cycles equals one (i.e., maxiter = ∞ and maxmgv =
1). In other words, one performs a V-cycle, where the modulus fixed-point
iteration is fully converged to its limit zl∗ on each level l before it is prolonged
and projected on the next finer level l+1 after eventually restricting the initial
approximation to the coarsest level lmin, such that δu∗ = δu(z∗) then solves
G(u+ δu∗) = 0 on the finest grid lmax.

Obviously, the most expensive part of this algorithm is the solution of
the ANF in solveANF, which requires the solution of the linear equation

Alzlnew := [I − SΣzlold
]zlnew = (a− ZJ−1b) := ql

for every modulus fixed-point iteration step FPIter on each level l, in order
to determine the next switching variables zlnew based on the previous estimate
zlold or the computation of δul according to (7). The latter linear equations
can be solved again in a multigrid fashion, which then leads to the nested
approach that was also depicted in Figure 1. However, the same objections
concerning the undesired smoothing effect of the MG-cycle for the linear solve
partly hold true. Another improvement that can be applied for all methods,
which might pay off in the case of an expensive function evaluation, is that
the ANF is evaluated only once on the finest level and then gets restricted to
the coarser grids. Also, the ANF does not need to be reevaluated from scratch
after updating u = u+ δu∗ after one modified MGV cycle; instead one can
set a := a+ Zδu∗ and b := b+ Jδu∗ to find the new residual approximation
0 = Gu(δu∗ + δu) for the next cycle3 in the piecewise linear case.

3Note that in general Gu(δu∗ +δu) 6= Gu+δu∗(δu) if Gx denotes the piecewise lineariza-
tion of a nonlinear, nonsmooth function F at x such that the proposed update of a and b
is, in fact, needed to find the exact residual equation of the ANF at u.
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4 Numerical Experiments

4.1 Linear Complementary Problem

The first example is the linear complementarity problem in 2D,

0 ≤ u(ω)− ϕ(ω) ⊥ −∆u(ω)− f(ω) ≥ 0, for almost all ω ∈ Ω, (16)

where ω = (ω1, ω2) is a vector in Ω, which denotes the domain that is given
by the unit square Ω = [0, 1]2 in R2. The forcing term f = fr for the
negative Laplace operator −∆ and the lower bound ϕ are defined for all
ω = (ω1, ω2) ∈ Ω by

fr(x) = sin(rπω1)sin(rπω2) and ϕ(ω) = −I{ω∈ΩB}(ω),

where r ∈ N and subsets ΩB ∈ {Ω◦,Ω�,Ω�} of Ω. The three different
choices Ω◦,Ω�,Ω� for the set ΩB and the corresponding induced lower bound
functions ϕ are visualized in Figure 3 besides the forcing term f3, which was
used for the presented numerical results. The sets were specifically chosen
to provide a small sample of different scenarios of lower bounds; that is, the
set Ω◦ is the ball centered at 0 with radius 1

2
that has a smooth boundary

within Ω, in contrast to Ω�, which is the closed square
[

1
4
, 3

4

]
×
[

1
4
, 1

2

]
. The

set Ω� has a repeated checkerboard pattern and represents problems where
the discretization needs to be fine enough to resolve the behavior of the lower
bound. It is defined to be the subset of the unit square Ω, where the function
f15 has negative values.

4.2 Nonlinear Complementarity Problem

The proposed algorithms were also applied to the complementarity problem

0 ≤ u(ω)− ϕ(ω) ⊥ H(u(ω)) ≥ 0, for almost all ω ∈ Ω, (17)

with the previously defined quantities, where the right part of the condition
(16) was replaced by the nonlinear expression H(u) = −∇2u − f3 − Ψ(u).
This involves the additional term Ψ(u), which was chosen to be the operator

Ψ(u) := sin(πω1) sin(2πω2) ∗
(
u3(ω)

3
− u2(ω)

2
− 1
)

∀ ω = (ω1, ω2) ∈ Ω

such that Ψ, and thus f3 + Ψ vanish on the boundaries of Ω = [0, 1]2.
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4.3 Numerical Results

The numerical results were computed on a Lenovo Thinkpad X1 Carbon
with Opensuse 13.1 using the simple Matlab 2013 implementation given in
the Appendix. For all experiments, the same random (i.i.d.) function u0 (and
z0) was used as an initial approximation4 of the true solution u∗ (and z∗) on
the finest grid level lmax = 11. Therefore, the partial differential equation
was numerically approximated on an equidistant grid with N (l) := 2l + 1
discretization points in each direction using the discrete finite-differences
2D Laplace operator matrix and zero Dirichlet boundary conditions. All
problems were solved up to machine precision in the appropriate L2-norm
for each discretization level l. The required number of inner modulus fixed-
point iterations to solve the problems and the overall run-time in seconds are
reported in Tables 1-7, which are summarized in Fig. 7.

In detail, Table 1 contains the results for the linear problem (16) and
the choices Ω◦, Ω�, Ω� using the simple MFP (6) that was solved exactly
on each of the stated discretization levels l for the random initialization.
Table 2 shows the possible computational saving that can be obtained for
the same setup by exploiting the given problem structure if the simple fixed-
point iteration (6) is replaced by its efficient reformulation (8). Table 3 gives
the result for one modified VCycle (maxmgv = 1), where the modulus fixed-
point iteration (8) for zl was converged (maxiter = inf) on every level l
starting from the solution on the coarser level l − 1, which was prolonged
by (13) but without the projection (12). The results using the projection
(12) can be found in Table 4. The results of the full multigrid method
(maxiter = 2,maxmgv = 3) with projection are given in Table 5. Here,
the number of iterations represents the sum of all required modulus fixed-
point iterations on each level needed during the full multigrid-method to
achieve the same accuracy. Tables 6 and 7 summarize the results for the
nonlinear problem that was solved by a sequence of modified MGV cycles
and the full-multigrid method, respectively. On average, three modified MGV
cycles (nonsmooth Newton-steps) are sufficient to achieve the desired residual
accuracy. The required number maxmgv of MGV cycles for the full multigrid
method turns out to be three, also. A visualization of the solution u∗ and
the final switching variables z∗ for the level l = 6 can be found in Fig. 4,
Fig. 5, and Fig. 6.

4if needed, the random initialization on the coarser grid was obtained by the restriction
(14) to allow for comparable results
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The nested multigrid method was not considered in the numerical exper-
iments in order to avoid any interference, but it is likely to provide further
speedup. Instead, all the occurring linear equations within the solveANF
method were solved by Matlab’s backslash operator.
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Figure 3: Right-hand-side f3, and the indicator functions induced by Ω◦, Ω�,
and Ω� (from left to right).

Figure 4: Solution u of the linear complementarity problem for the lower
bounds induced by Ω◦, Ω�, and Ω� (from left to right).
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Figure 5: Visualization of the final switching function z, sign(z), prolonga-
tion of sign(z), and the simple prolongation of z for the linear problem (from
left to right) and the three choices Ω◦(top), Ω�(middle), and Ω�(bottom).

Figure 6: Visualization of the final solution u (top) and the final switching
function z (bottom) for the nonlinear problem Ω◦, Ω�, and Ω� (left to right).
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Figure 7: Visualization of the number of required FPIter (left) and overall
run-time in seconds (right) for each discretization level l reported in Table 1
(yellow), Table 2 (light orange), Table 3 (dark orange), and Table 4 (red) for
the three different lowerbounds Ω◦ (◦), Ω� (�), and Ω� (×).

l ] Iter Time Ω◦ ] Iter Time Ω� ] Iter Time Ω�

1 2 6.960000e-04 2 6.350000e-04 3 8.670000e-04
2 2 1.733000e-03 3 1.873000e-03 3 2.383000e-03
3 3 7.161000e-03 5 8.501000e-03 5 1.032100e-02
4 3 5.299700e-02 6 1.286270e-01 5 8.884200e-02
5 5 1.509989e+00 9 2.392125e+00 7 1.860127e+00

Table 1: Results for the linear problem (16) using the simple MFP (6),
without projection, for the choices Ω◦, Ω�, Ω� solved on each level l.

l ] Iter Time Ω◦ ] Iter Time Ω� ] Iter Time Ω�

1 2 6.020000e-04 2 6.100000e-04 3 7.960000e-04
2 2 1.085000e-03 3 1.532000e-03 3 1.571000e-03
3 3 4.504000e-03 5 7.382000e-03 5 7.394000e-03
4 3 5.249300e-02 5 9.025300e-02 6 1.022870e-01
5 2 5.411540e-01 5 1.353975e+00 8 2.140963e+00

Table 2: Results for the linear problem (16) using the efficient MFP (8),
without projection, standard prolongation (13), and simple restriction (15),
for the choices Ω◦, Ω�, Ω� solved on each level l.
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l ] Iter Time Ω◦ ] Iter Time Ω� ] Iter Time Ω�

1 2 1.216000e-03 2 4.970000e-04 3 7.640000e-04
2 2 5.120000e-04 3 6.750000e-04 3 7.010000e-04
3 3 1.240000e-03 5 1.685000e-03 5 1.738000e-03
4 3 3.251000e-03 5 4.509000e-03 6 5.278000e-03
5 2 8.380000e-03 5 1.596500e-02 8 2.536600e-02
6 7 8.506000e-02 4 6.641000e-02 11 1.369770e-01
7 12 6.216080e-01 6 3.692940e-01 16 8.856710e-01
8 22 5.112441e+00 5 1.510281e+00 26 6.447225e+00
9 42 5.328563e+01 6 8.533525e+00 47 5.336615e+01

Table 3: Results for the linear problem (16) using the efficient MFP (8) using
one modified VCycle, without projection, standard prolongation (13), and
simple restriction (15), for Ω◦, Ω�, Ω�.

l ] Iter Time Ω◦ ] Iter Time Ω� ] Iter Time Ω�

1 2 7.390000e-04 2 2.122500e-02 3 2.366400e-02
2 2 6.720000e-04 3 5.671400e-02 3 6.433000e-02
3 3 1.681000e-03 4 1.592000e-03 4 1.466000e-03
4 3 4.496000e-03 4 3.956000e-03 6 2.588600e-02
5 4 1.912300e-02 5 1.876200e-02 5 1.699400e-02
6 5 8.937600e-02 4 7.618000e-02 5 8.776500e-02
7 5 4.231790e-01 5 2.698110e-01 5 2.943600e-01
8 5 1.617928e+00 5 1.319262e+00 5 1.379170e+00
9 5 8.022691e+00 6 7.749272e+00 5 7.195976e+00
10 5 4.403858e+01 5 3.904835e+01 6 4.913688e+01
11 6 3.958369e+02 5 2.878728e+02 6 3.317204e+02

Table 4: Results for the linear problem (16) using the efficient MFP (8)
using one modified VCycle, with projection, standard prolongation (13),
and simple restriction (15), for Ω◦, Ω�, Ω�.
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l ] Iter Time Ω◦ ] Iter Time Ω� ] Iter Time Ω�

1 31 1.324390e-01 33 2.058090e-01 40 7.987100e-02
2 55 1.672640e-01 59 1.668160e-01 71 1.495700e-01
3 47 1.224120e-01 52 1.150760e-01 64 1.383930e-01
4 39 2.049110e-01 44 3.029320e-01 56 2.337380e-01
5 32 8.836760e-01 36 4.422830e-01 48 5.185170e-01
6 24 7.157060e-01 28 1.186067e+00 40 1.576971e+00
7 20 3.216956e+00 20 3.502826e+00 32 5.414041e+00
8 16 1.055167e+01 16 8.553483e+00 24 1.576412e+01
9 12 3.098891e+01 12 2.963045e+01 16 4.225638e+01
10 8 1.139729e+02 8 1.176420e+02 8 1.208749e+02
11 4 4.012236e+02 4 4.682104e+02 4 3.886089e+02

Table 5: Results for the linear problem (16) using the efficient MFP (8) using
the Full multigrid, with projection, standard prolongation (13), and simple
restriction (15), for the choices Ω◦, Ω�, Ω�.

l ] Iter Time Ω◦ ] Iter Time Ω� ] Iter Time Ω�

1 (2,2,2) 3.648100e-02 (2,2,2) 7.651100e-02 (3,3,3) 3.660200e-02
2 (2,2,2) 1.039410e-01 (2,2,2) 1.501190e-01 (4,4,4) 1.378060e-01
3 (3,3,3) 4.527000e-03 (4,4,4) 6.986000e-03 (3,3,3) 3.965000e-03
4 (4,4,4) 5.646800e-02 (4,4,4) 1.094530e-01 (7,7,7) 8.923100e-02
5 (4,4,4) 5.401000e-02 (5,5,5) 4.828000e-02 (5,5,6) 6.527600e-02
6 (5,4,4) 3.606830e-01 (5,5,5) 1.839210e-01 (5,5,5) 8.170460e-01
7 (6,6,6) 1.082465e+00 (5,5,5) 8.430270e-01 (5,5,5) 9.230070e-01
8 (4,4,4) 4.097798e+00 (5,5,5) 4.181277e+00 (5,5,5) 4.203123e+00
9 (5,5,5) 2.617473e+01 (5,6,6) 2.201599e+01 (6,6,6) 2.343003e+01
10 (7,5,5) 1.584398e+02 (6,6,6) 1.361256e+02 (6,6,6) 1.321681e+02
11 (8,9,9) 1.588478e+03 (6,6,6) 9.912651e+02 (6,6,6) 9.558356e+02

Table 6: Results for the nonlinear problem (17) using the efficient MFP (8)
using modified V-cycle, with projection (12), standard prolongation (13),
and simple restriction(15), for Ω◦, Ω�, Ω�, where the number of fixed-point
iterations is given for each of the three MGV cycles separately for all levels
l.
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l ] Iter Time Ω◦ ] Iter Time Ω� ] Iter Time Ω�

1 35 7.583000e-02 33 8.437100e-02 58 5.103100e-02
2 63 4.279350e-01 59 1.839830e-01 72 7.344700e-02
3 55 5.484400e-01 52 2.199040e-01 63 1.222720e-01
4 48 6.964250e-01 44 3.449400e-01 56 2.062820e-01
5 40 1.019395e+00 36 5.527570e-01 48 4.886610e-01
6 32 2.182906e+00 28 1.381449e+00 40 1.219615e+00
7 24 5.050670e+00 20 3.431927e+00 32 3.935502e+00
8 16 1.086553e+01 16 9.884764e+00 24 1.330366e+01
9 12 3.491688e+01 12 3.278858e+01 16 4.129180e+01
10 8 1.322932e+02 8 1.128040e+02 8 1.087870e+02
11 4 5.399108e+02 4 3.986173e+02 4 4.192130e+02

Table 7: Results for the nonlinear problem (17) using the efficient MFP
(8) using the Full multigrid, with projection, standard prolongation (13),
simple restriction(15), for the choices Ω◦, Ω�, Ω�.

From the results one can deduce (at least for the stated problem) that
each of the proposed modifications increases the efficiency of the suggested
methods. In particular, Tables 1 and 2 show that it (as usual) pays off to do
some analysis and exploit the structure of the problem rather than blindly
applying piecewise linear differentiation on a black-box model and the results
for solving piecewise linear systems given in [25]. Table 3 indicates that using
the prolonged solution of the coarser grid as an initial guess for a finer level
helps decrease the number of solveANF cycles, which can be further reduced
if the prolongation is done in a more appropriate way (see Table 4), namely,
by using the projection (12) before the prolongation (13). In fact, the number
of inner iterations seems to be constant, with an average around 6 indicating
mesh-independent behavior independent of the lower bound function ϕ. A
similar result can be seen for the nonlinear problem, where the computation
of every nonsmooth Newton-direction by the modified VCycle requires the
same number of fixed-point iterations to converge. The small fluctuations
can be explained by the artificial error of the projection/prolongation, which
is still not 100% appropriate for the nonsmooth/discontinuous functions z
and requires a small additional number of correction steps/fixed-point itera-
tions. Comparing Table 4 and Table 5, we see that the modified V-cycle is
competitive with the full multigrid method for the linear problem in contrast
to the nonlinear case (Tables 6 and 7), where the full multigrid method
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seems to perform better, mainly because of the smaller number of fixed point
iterations on the finer grid.

5 Conclusion

In this paper, a multigrid method for nonsmooth problems was considered.
It is based on ideas of the original multigrid method and techniques from
piecewise linear differentiation in finite dimensions. We assumed that the
considered problems were abs-decomposable and their piecewise linearization
can be written in abs-normal form. The abs-normal form allows for various
iterative schemes that can be applied to solve the resulting piecewise linear
equation using some additional switching variables for each discretization
level. The overall method is based on a successive refinement strategy, where
(approximate) solutions of the additional switching variables on a coarser
levels are used as initial approximations on a finer level. Since the switch-
ing variables themselves are usually nonsmooth or even discontinuous, their
prolongation from the coarser to the finer level needs special treatment, as
it was exemplified for a simple complementarity problem. It appears that a
“correct” prolongation, restriction, and projection of these variables provide
(almost) mesh-independent results allowing for an efficient solution of the
problem with up to 4,2 million degrees of freedom on the finest discretization
level in a reasonable time, which is comparable to the results5 of the different
approaches presented in [26, 9, 11, 15]. The resulting method and strategies
could be used to solve time-dependent differential equations together with
the generalized mid-point rule [5], for example if the time integration involves
some nonsmooth UPWIND/QUICK scheme[27], which can be stated in terms
of min and max. However, it is not clear whether the small average number of
modulus fixed-point iterations observed for the considered example does hold
true in general. If not, this would suggest further investigation of a more ap-
propriate projection and prolongation strategy for nonsmooth/discontinuous
functions. Also, different fallback options for singular J instead of using only
the extended ANF should be investigated. Furthermore, different strategies
for the nonlinear case should be part of future research directions, for exam-
ple, comparing the presented Newton-MG with an MG-Newton scheme and
an additional line-search for the globalization.

5if not better

28



Acknowledgment

This material is based upon work supported by the U.S. Department of
Energy, Office of Science, under contract number DE-AC02-06CH11357. The
author is grateful to Zichao (Wendy) Di for several comments that helped
improve the notation and Gail Pieper for her patient and precious corrections.

Appendix - Matlab Codes

This section contains parts of a simple MATLAB implementation for the
proposed methods that were used to compute the presented results. The
methods coincide with the algorithms except for the difference in solveANF
and FPIter, where the computation of δunew was detached from FPIter and
is computed only once at the end of the fixed-point iteration, in order to avoid
obsolete linear-solves and increase the overall efficiency.

Listing 1: V-Cycle method
f unc t i on [ z , Du ] = VCycle ( l , lmin , z , u , Du, to l , maxiter )

[ a , b , Z , L , J , Y] = evalANF( l , u , Du) ;
i f l<=lmin

maxiter=1e3 ;
e l s e

[ z , Du] = solveANF ( l , a , b , Z , L , J , Y, z , Du, to l , maxiter ) ;
z=p ro j e c t z ( z , l ) ;
z=r e s t r i c t z ( z , l ) ;
u=r e s t r i c t u (u , l ) ;
[ z , Du] = VCycle ( l - 1 , lmin , z , u , Du, to l , maxiter ) ;
z=p ro j e c t z ( z , l - 1 ) ;
z=pro longz ( z , l - 1 ) ;
Du=prolongu (Du, l - 1 ) ;

end
[ z , Du] = solveANF ( l , a , b , Z , L , J , Y, z , Du, to l , maxiter ) ;

r e turn

Listing 2: Multigrid cycle
f unc t i on [ z , u ] = MGV( l , lmin , z , u , to l , maxiter , maxmgv)

f l a g =1; i =1;
Du = 0 . ∗u ( : ) ;
whi le ( f l a g ~=0)&&(i<=maxmgv)

[ z , Du] = VCycle ( l , lmin , z , u , Du, to l , maxiter ) ;
u ( : ) = u ( : ) + Du ( : ) ;
i=i +1;
i f ( s ca lp rod ( l , Du( : ) , Du ( : ) ) <= to l )

f l a g =0;
end

end
return

29



Listing 3: Full multigrid method
f unc t i on [ z , u ] = FullMG( lmax , l cur , lmin , z , u , to l , maxiter , maxmgv)

f o r l=l cu r : - 1 : lmin+1
z=pro j e c t z ( z , l ) ;
z=r e s t r i c t z ( z , l ) ;
u=r e s t r i c t u (u , l ) ;

end
f o r l=lmin : 1 : lmax

[ z , u ]= MGV( l , lmin , z , u , to l , maxiter , maxmgv ) ;
i f l<lmax

z=pro j e c t z ( z , l ) ;
z=pro longz ( z , l ) ;
u=prolongu (u , l ) ;

end
end

return

Listing 4: Modified V-Cycle
f unc t i on [ z , Du ]= modVCycle ( l , lmin , z , u , Du, t o l )

[ a , b , Z , L , J , Y]=evalANF( l , u , Du) ;
i f l>lmin

z=pro j e c t z ( z , l ) ;
z=r e s t r i c t z ( z , l ) ;
u=r e s t r i c t u (u , l ) ;
[ z , Du]= modVCycle ( l - 1 , lmin , z , u , Du, t o l ) ;
z=p ro j e c t z ( z , l - 1 ) ;
z=pro longz ( z , l - 1 ) ;
Du=prolongu (Du, l - 1 ) ;

end
[ z , Du] = solveANF ( l , a , b , Z , L , J , Y, z , Du, to l , i n f ) ;

r e turn

Listing 5: Modified Multigrid cycle
f unc t i on [ z , u ] = modMGV( l , lmin , z , u , t o l )

Du=0 . ∗u ( : ) ;
[ z , Du ] = modVCycle ( l , lmin , z , u , Du, t o l ) ;
u ( : ) = u ( : ) + Du ( : ) ;

r e turn

Listing 6: solveANF method
f unc t i on [ z , Du]= solveANF ( l , a , b , Z , L , J , Y, z , Du, to l , maxiter )

i t e r =0; f l a g =1; t i c ;
whi le ( ( f l a g ~=0)&&( i t e r<maxiter ) )

i t e r=i t e r +1;
[ znew ] = FPIter ( a , b , Z , L , J , Y, z ( : ) , Du ( : ) ) ;
t = z ( : ) - znew ( : ) ; r e s=sca lprod ( l , t ( : ) , t ( : ) ) ;
i f res<t o l

f l a g = 0 ;
end

z=znew ;
end
Du=-J\(b+Y∗abs ( znew ( : ) ) ) ; %For e f f i c i e n c y reason

return
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Listing 7: Plain FPIter method
f unc t i on [ z , Du] = FPiter ( a , b , Z , L , J , Y, z , Du)

rhs=a ( : ) - Z∗( J\b ( : ) ) ;
Sigma=spd iags ( s i gn ( z ( : ) ) , 0 , l ength ( a ( : ) ) , l ength ( a ( : ) ) ) ;
I=spd iags ( ones ( l ength ( a ( : ) ) ) , 0 , l ength ( a ( : ) ) , l ength ( a ( : ) ) ) ;
A=I - (L-Z∗( J\Y))∗ Sigma ;
z=A\ rhs ( : ) ;

r e turn

Listing 8: Efficient FPIter method
f unc t i on [ z , Du] = FPiter ( a , b , Z , L , J , Y, z , Du)

rhs=J∗a ( : ) - Z∗b ( : ) ;
Sigma=spd iags ( s i gn ( z ( : ) ) , 0 , l ength ( a ( : ) ) , l ength ( a ( : ) ) ) ;
A=J -Z∗Sigma ;
z=A\ rhs ( : ) ;

r e turn

Listing 9: Projection z
f unc t i on [ z ]= p ro j e c t z ( z , l )

z=s ign ( z ) ;
r e turn

Listing 10: Prolongation)
f unc t i on [ xnew ] = prolong ( x , l )

n=2ˆ l +1;
nnew = 2∗(n -1)+1;
xnew = ze ro s (nnew , nnew ) ;
f o r j =1:n

f o r i =1:n
xnew (2∗ ( i -1)+1 ,2∗( j -1)+1) = x( i , j ) ;

end
end
f o r j =1:2:nnew

f o r i =2:2:nnew -1
xnew( i , j ) = 0 . 5 ∗(xnew( i - 1 , j ) + xnew( i +1, j ) ) ;

end
end
f o r j =2:2:nnew -1

f o r i =1:nnew
xnew( i , j ) = 0 . 5 ∗(xnew( i , j - 1 ) + xnew( i , j +1)) ;

end
end

return
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